Differential interfacial and substrate binding modes of mammalian pancreatic phospholipases A2: a comparison among human, bovine, and porcine enzymes.
نویسندگان
چکیده
To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity was measured using various substrates including phospholipid monomers, zwitterionic and anionic micelles, and anionic polymerized mixed liposomes. Similar mutations (R6E, K10E, K56E, and K116E) were made to porcine pancreatic phospholipase A2 (ppPLA2), and the properties of mutants were measured by the same methods. Results indicate that hpPLA2 and ppPLA2 have similar interfacial binding mechanisms in which cationic residues in the amino terminus and Lys-116 in the carboxy terminus are involved in binding to anionic lipid surfaces. Small but definite differences between the two enzymes were observed in overall interfacial affinity and activity and the effects of the mutations on interfacial enzyme activity. The interfacial binding of hpPLA2 and ppPLA2 is distinct from that of bovine pancreatic phospholipase A2 in that Lys-56 is involved in the interfacial binding of the latter enzyme. The unique phospholipid headgroup specificity of hpPLA2 derives from the presence of Asp-53 in the substrate binding site. This residue appears to participate in stabilizing electrostatic interactions with the cationic ethanolamine headgroup, hence the phosphatidylethanolamine preference of hpPLA2. Taken together, these studies reveal the similarities and the differences in the mechanisms by which mammalian pancreatic phospholipases A2 interact with lipid aggregates and perform interfacial catalysis.
منابع مشابه
Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2.
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A(2) (sPLA(2)s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA(2)s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicl...
متن کاملThe chemical basis for interfacial activation of monomeric phospholipases A2. Autocatalytic derivatization of the enzyme by acyl transfer from substrate.
A basic monomeric phospholipase A2 from the venom of the American water moccasin, Agkistrodon piscivorus piscivorus, undergoes Ca2+-dependent, autocatalytic acylation during the course of hydrolysis of both model and natural phospholipid substrates. Acylation occurs at 2 lysine residues, Lys-7 and Lys-10, in the NH2-terminal alpha-helical segment of the enzyme, and when both positions are fully...
متن کاملInterfacial Kinetic and Binding Properties of the Complete Set of Human and Mouse Groups
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2 (sPLA2s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA2s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of ...
متن کاملComputational analysis of the membrane association of group IIA secreted phospholipases A2: a differential role for electrostatics.
Secreted phospholipases A2 (sPLA2's) are enzymes that hydrolyze glycerophospholipids at the sn-2 position, which leads to the production of lipid mediators of many cellular processes. These interfacial enzymes are regulated by their lipid specificity at two levels: membrane binding and substrate recognition. Different sPLA2's utilize different combinations of electrostatic and hydrophobic inter...
متن کاملPancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors
Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 24 شماره
صفحات -
تاریخ انتشار 1999